Mutations in rpoBC suppress the defects of a Sinorhizobium meliloti relA mutant.

نویسندگان

  • Derek H Wells
  • Sharon R Long
چکیده

The nitrogen-fixing symbiosis between Sinorhizobium meliloti and Medicago sativa requires complex physiological adaptation by both partners. One method by which bacteria coordinately control physiological adaptation is the stringent response, which is triggered by the presence of the nucleotide guanosine tetraphosphate (ppGpp). ppGpp, produced by the RelA enzyme, is thought to bind to and alter the ability of RNA polymerase (RNAP) to initiate and elongate transcription and affect the affinity of the core enzyme for various sigma factors. An S. meliloti relA mutant which cannot produce ppGpp was previously shown to be defective in the ability to form nodules. This mutant also overproduces a symbiotically necessary exopolysaccharide called succinoglycan. The work presented here encompasses the analysis of suppressor mutants, isolated from host plants, that suppress the symbiotic defects of the relA mutant. All suppressor mutations are extragenic and map to either rpoB or rpoC, which encode the beta and beta' subunits of RNAP. Phenotypic, structural, and gene expression analyses reveal that suppressor mutants can be divided into two classes; one is specific in its effect on stringent response-regulated genes and shares striking similarity with suppressor mutants of Escherichia coli strains that lack ppGpp, and another reduces transcription of all genes tested in comparison to that in the relA parent strain. Our findings indicate that the ability to successfully establish symbiosis is tightly coupled with the bacteria's ability to undergo global physiological adjustment via the stringent response.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Characterization of Sinorhizobium meliloti triose phosphate isomerase genes.

A Tn5 mutant strain of Sinorhizobium meliloti with an insertion in tpiA (systematic identifier SMc01023), a putative triose phosphate isomerase (TPI)-encoding gene, was isolated. The tpiA mutant grew more slowly than the wild type on rhamnose and did not grow with glycerol as a sole carbon source. The genome of S. meliloti wild-type Rm1021 contains a second predicted TPI-encoding gene, tpiB (SM...

متن کامل

Ribosomal protein gene cluster analysis in eubacterium genomics: homology between Sinorhizobium meliloti strain 1021 and Bacillus subtilis

The first whole genome sequence of a symbiotic soil bacterium, Sinorhizobium meliloti (formely named Rhizobium meliloti) strain 1021, is due in 2001. As an active participant in the European and North American consortium that has completed this work, our group has sequenced a region on the chromosome containing clusters rpoBC, str, S10, spc and alpha corresponding to 30 protein genes. The struc...

متن کامل

Multiple groESL operons are not key targets of RpoH1 and RpoH2 in Sinorhizobium meliloti.

Among the rhizobia that establish nitrogen-fixing nodules on the roots of host plants, many contain multiple copies of genes encoding the sigma factor RpoH and the chaperone GroEL/GroES. In Sinorhizobium meliloti there are two rpoH genes, four groESL operons, and one groEL gene. rpoH1 mutants are defective for growth at high temperature and form ineffective nodules, rpoH1 rpoH2 double mutants a...

متن کامل

Poly-3-hydroxybutyrate degradation in Rhizobium (Sinorhizobium) meliloti: isolation and characterization of a gene encoding 3-hydroxybutyrate dehydrogenase.

We have cloned and sequenced the 3-hydroxybutyrate dehydrogenase-encoding gene (bdhA) from Rhizobium (Sinorhizobium) meliloti. The gene has an open reading frame of 777 bp that encodes a polypeptide of 258 amino acid residues (molecular weight 27,177, pI 6.07). The R. meliloti Bdh protein exhibits features common to members of the short-chain alcohol dehydrogenase superfamily. bdhA is the first...

متن کامل

Sinorhizobium meliloti bluB is necessary for production of 5,6-dimethylbenzimidazole, the lower ligand of B12.

An insight into a previously unknown step in B(12) biosynthesis was unexpectedly obtained through our analysis of a mutant of the symbiotic nitrogen fixing bacterium Sinorhizobium meliloti. This mutant was identified based on its unusually bright fluorescence on plates containing the succinoglycan binding dye calcofluor. The mutant contains a Tn5 insertion in a gene that has not been characteri...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of bacteriology

دوره 185 18  شماره 

صفحات  -

تاریخ انتشار 2003